Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 12(2): e0256222, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38230952

RESUMEN

Assembly of infectious hepatitis C virus (HCV) particles requires multiple cellular proteins including for instance apolipoprotein E (ApoE). To describe these protein-protein interactions, we performed an affinity purification mass spectrometry screen of HCV-infected cells. We used functional viral constructs with epitope-tagged envelope protein 2 (E2), protein (p) 7, or nonstructural protein 4B (NS4B) as well as cells expressing a tagged variant of ApoE. We also evaluated assembly stage-dependent remodeling of protein complexes by using viral mutants carrying point mutations abrogating particle production at distinct steps of the HCV particle production cascade. Five ApoE binding proteins, 12 p7 binders, 7 primary E2 interactors, and 24 proteins interacting with NS4B were detected. Cell-derived PREB, STT3B, and SPCS2 as well as viral NS2 interacted with both p7 and E2. Only GTF3C3 interacted with E2 and NS4B, highlighting that HCV assembly and replication complexes exhibit largely distinct interactomes. An HCV core protein mutation, preventing core protein decoration of lipid droplets, profoundly altered the E2 interactome. In cells replicating this mutant, E2 interactions with HSPA5, STT3A/B, RAD23A/B, and ZNF860 were significantly enhanced, suggesting that E2 protein interactions partly depend on core protein functions. Bioinformatic and functional studies including STRING network analyses, RNA interference, and ectopic expression support a role of Rad23A and Rad23B in facilitating HCV infectious virus production. Both Rad23A and Rad23B are involved in the endoplasmic reticulum (ER)-associated protein degradation (ERAD). Collectively, our results provide a map of host proteins interacting with HCV assembly proteins, and they give evidence for the involvement of ER protein folding machineries and the ERAD pathway in the late stages of the HCV replication cycle.IMPORTANCEHepatitis C virus (HCV) establishes chronic infections in the majority of exposed individuals. This capacity likely depends on viral immune evasion strategies. One feature likely contributing to persistence is the formation of so-called lipo-viro particles. These peculiar virions consist of viral structural proteins and cellular lipids and lipoproteins, the latter of which aid in viral attachment and cell entry and likely antibody escape. To learn about how lipo-viro particles are coined, here, we provide a comprehensive overview of protein-protein interactions in virus-producing cells. We identify numerous novel and specific HCV E2, p7, and cellular apolipoprotein E-interacting proteins. Pathway analyses of these interactors show that proteins participating in processes such as endoplasmic reticulum (ER) protein folding, ER-associated protein degradation, and glycosylation are heavily engaged in virus production. Moreover, we find that the proteome of HCV replication sites is distinct from the assembly proteome, suggesting that transport process likely shuttles viral RNA to assembly sites.


Asunto(s)
Hepacivirus , Hepatitis C , Humanos , Hepacivirus/genética , Proteínas no Estructurales Virales/genética , Proteoma/metabolismo , Línea Celular , Apolipoproteínas E/metabolismo , Apolipoproteínas/metabolismo , Proteínas de Unión al ADN/metabolismo , Enzimas Reparadoras del ADN/metabolismo
2.
Mol Syst Biol ; 17(7): e10125, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34318608

RESUMEN

Cells signal through rearrangements of protein communities governed by covalent modifications and reversible interactions of distinct sets of proteins. A method that identifies those post-transcriptional modifications regulating signaling complex composition and functional phenotypes in one experimental setup would facilitate an efficient identification of novel molecular signaling checkpoints. Here, we devised modifications, interactions and phenotypes by affinity purification mass spectrometry (MIP-APMS), comprising the streamlined cloning and transduction of tagged proteins into functionalized reporter cells as well as affinity chromatography, followed by MS-based quantification. We report the time-resolved interplay of more than 50 previously undescribed modification and hundreds of protein-protein interactions of 19 immune protein complexes in monocytes. Validation of interdependencies between covalent, reversible, and functional protein complex regulations by knockout or site-specific mutation revealed ISGylation and phosphorylation of TRAF2 as well as ARHGEF18 interaction in Toll-like receptor 2 signaling. Moreover, we identify distinct mechanisms of action for small molecule inhibitors of p38 (MAPK14). Our method provides a fast and cost-effective pipeline for the molecular interrogation of protein communities in diverse biological systems and primary cells.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteómica , Complejo Antígeno-Anticuerpo , Espectrometría de Masas , Fenotipo
3.
Cell Rep ; 34(10): 108826, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33691121

RESUMEN

A major pathway for proinflammatory protein release by macrophages is inflammasome-mediated pyroptotic cell death. As conventional secretion, unconventional secretion, and cell death are executed simultaneously, however, the cellular mechanisms regulating this complex paracrine program remain incompletely understood. Here, we devise a quantitative proteomics strategy to define the cellular exit route for each protein by pharmacological and genetic dissection of cellular checkpoints regulating protein release. We report the release of hundreds of proteins during pyroptosis, predominantly due to cell lysis. They comprise constitutively expressed and transcriptionally induced proteins derived from the cytoplasm and specific intracellular organelles. Many low-molecular-weight proteins including the cytokine interleukin-1ß, alarmins, and lysosomal-cargo proteins exit cells in the absence of cell lysis. Cytokines and alarmins are released in an endoplasmic reticulum (ER)-Golgi-dependent manner as free proteins rather than by extracellular vesicles. Our work provides an experimental framework for the dissection of cellular exit pathways and a resource for pyroptotic protein release.


Asunto(s)
Alarminas/análisis , Citocinas/análisis , Proteómica/métodos , Piroptosis , Adenosina Trifosfato/farmacología , Alarminas/metabolismo , Animales , Células Cultivadas , Cromatografía Líquida de Alta Presión , Citocinas/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Humanos , Lipopolisacáridos/farmacología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Nigericina/farmacología , Espectrometría de Masas en Tándem
4.
Nat Commun ; 11(1): 431, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31969567

RESUMEN

Multinucleated giant cells (MGCs) are implicated in many diseases including schistosomiasis, sarcoidosis and arthritis. MGC generation is energy intensive to enforce membrane fusion and cytoplasmic expansion. Using receptor activator of nuclear factor kappa-Β ligand (RANKL) induced osteoclastogenesis to model MGC formation, here we report RANKL cellular programming requires extracellular arginine. Systemic arginine restriction improves outcome in multiple murine arthritis models and its removal induces preosteoclast metabolic quiescence, associated with impaired tricarboxylic acid (TCA) cycle function and metabolite induction. Effects of arginine deprivation on osteoclastogenesis are independent of mTORC1 activity or global transcriptional and translational inhibition. Arginine scarcity also dampens generation of IL-4 induced MGCs. Strikingly, in extracellular arginine absence, both cell types display flexibility as their formation can be restored with select arginine precursors. These data establish how environmental amino acids control the metabolic fate of polykaryons and suggest metabolic ways to manipulate MGC-associated pathologies and bone remodelling.


Asunto(s)
Arginina/metabolismo , Células Gigantes/inmunología , Animales , Artritis/genética , Artritis/metabolismo , Artritis/fisiopatología , Remodelación Ósea , Ciclo del Ácido Cítrico , Femenino , Células Gigantes/citología , Humanos , Interleucina-4/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos C57BL , Osteoclastos/citología , Osteoclastos/metabolismo , Osteogénesis , Ligando RANK/genética , Ligando RANK/metabolismo
5.
Cell Rep ; 30(4): 1260-1270.e5, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31995763

RESUMEN

The inflammatory functions of the cytokine tumor necrosis factor (TNF) rely on its ability to induce cytokine production and to induce cell death. Caspase-dependent and caspase-independent pathways-apoptosis and necroptosis, respectively-regulate immunogenicity by the release of distinct sets of cellular proteins. To obtain an unbiased, systems-level understanding of this important process, we here applied mass spectrometry-based proteomics to dissect protein release during apoptosis and necroptosis. We report hundreds of proteins released from human myeloid cells in time course experiments. Both cell death types induce receptor shedding, but only apoptotic cells released nucleosome components. Conversely, necroptotic cells release lysosomal components by activating lysosomal exocytosis at early stages of necroptosis-induced membrane permeabilization and show reduced release of conventionally secreted cytokines.


Asunto(s)
Apoptosis , Caspasa 8/metabolismo , Citocinas/metabolismo , Necroptosis , Ácidos Pentanoicos/farmacología , Proteoma/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Apoptosis/efectos de los fármacos , Inhibidores de Caspasas/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Quimiocina CCL2/metabolismo , Quimiocina CCL24/metabolismo , Dipéptidos/farmacología , Exocitosis/efectos de los fármacos , Vesículas Extracelulares/efectos de los fármacos , Vesículas Extracelulares/metabolismo , Células HEK293 , Histonas/metabolismo , Humanos , Indoles/farmacología , Interleucina-8/metabolismo , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Espectrometría de Masas , Necroptosis/efectos de los fármacos
6.
Methods Mol Biol ; 1714: 215-227, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29177865

RESUMEN

Secreted proteins such as cytokines, interleukins, growth factors, and hormones have pleiotropic functions and facilitate intercellular communication in organisms. Quantification of these proteins conventionally relies on antibody-based methods, i.e., enzyme-linked immunosorbent assays (ELISA), whose large-scale use is limited by availability, specificity, and affordability.Here, we describe an experimental and bioinformatics workflow to comprehensively quantify cellular protein secretion by mass spectrometry. Secreted proteins are collected in vitro or ex vivo, digested with proteases and the resulting peptide mixtures are analyzed in single liquid chromatography-mass spectrometry (LC-MS/MS) runs. Label-free quantification and bioinformatics analysis is conducted in the MaxQuant and Perseus computational environment. Our workflow allows the quantification of thousands of secreted proteins spanning a concentration range of four orders of magnitude and permits the systems-level characterization of secretory programs as well as the discovery of proteins with unexpected extracellular functions.


Asunto(s)
Cromatografía Liquida/métodos , Proteínas/metabolismo , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA